001 /*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements. See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License. You may obtain a copy of the License at
008 *
009 * http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017 package org.apache.commons.math.random;
018
019
020 /** This class implements the WELL44497b pseudo-random number generator
021 * from François Panneton, Pierre L'Ecuyer and Makoto Matsumoto.
022
023 * <p>This generator is described in a paper by François Panneton,
024 * Pierre L'Ecuyer and Makoto Matsumoto <a
025 * href="http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf">Improved
026 * Long-Period Generators Based on Linear Recurrences Modulo 2</a> ACM
027 * Transactions on Mathematical Software, 32, 1 (2006). The errata for the paper
028 * are in <a href="http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng-errata.txt">wellrng-errata.txt</a>.</p>
029
030 * @see <a href="http://www.iro.umontreal.ca/~panneton/WELLRNG.html">WELL Random number generator</a>
031 * @version $Revision: 1003892 $ $Date: 2010-10-02 23:28:56 +0200 (sam. 02 oct. 2010) $
032 * @since 2.2
033
034 */
035 public class Well44497b extends AbstractWell {
036
037 /** Serializable version identifier. */
038 private static final long serialVersionUID = 4032007538246675492L;
039
040 /** Number of bits in the pool. */
041 private static final int K = 44497;
042
043 /** First parameter of the algorithm. */
044 private static final int M1 = 23;
045
046 /** Second parameter of the algorithm. */
047 private static final int M2 = 481;
048
049 /** Third parameter of the algorithm. */
050 private static final int M3 = 229;
051
052 /** Creates a new random number generator.
053 * <p>The instance is initialized using the current time as the
054 * seed.</p>
055 */
056 public Well44497b() {
057 super(K, M1, M2, M3);
058 }
059
060 /** Creates a new random number generator using a single int seed.
061 * @param seed the initial seed (32 bits integer)
062 */
063 public Well44497b(int seed) {
064 super(K, M1, M2, M3, seed);
065 }
066
067 /** Creates a new random number generator using an int array seed.
068 * @param seed the initial seed (32 bits integers array), if null
069 * the seed of the generator will be related to the current time
070 */
071 public Well44497b(int[] seed) {
072 super(K, M1, M2, M3, seed);
073 }
074
075 /** Creates a new random number generator using a single long seed.
076 * @param seed the initial seed (64 bits integer)
077 */
078 public Well44497b(long seed) {
079 super(K, M1, M2, M3, seed);
080 }
081
082 /** {@inheritDoc} */
083 @Override
084 protected int next(final int bits) {
085
086 // compute raw value given by WELL44497a generator
087 // which is NOT maximally-equidistributed
088 final int indexRm1 = iRm1[index];
089 final int indexRm2 = iRm2[index];
090
091 final int v0 = v[index];
092 final int vM1 = v[i1[index]];
093 final int vM2 = v[i2[index]];
094 final int vM3 = v[i3[index]];
095
096 // the values below include the errata of the original article
097 final int z0 = (0xFFFF8000 & v[indexRm1]) ^ (0x00007FFF & v[indexRm2]);
098 final int z1 = (v0 ^ (v0 << 24)) ^ (vM1 ^ (vM1 >>> 30));
099 final int z2 = (vM2 ^ (vM2 << 10)) ^ (vM3 << 26);
100 final int z3 = z1 ^ z2;
101 final int z2Prime = ((z2 << 9) ^ (z2 >>> 23)) & 0xfbffffff;
102 final int z2Second = ((z2 & 0x00020000) != 0) ? (z2Prime ^ 0xb729fcec) : z2Prime;
103 int z4 = z0 ^ (z1 ^ (z1 >>> 20)) ^ z2Second ^ z3;
104
105 v[index] = z3;
106 v[indexRm1] = z4;
107 v[indexRm2] &= 0xFFFF8000;
108 index = indexRm1;
109
110 // add Matsumoto-Kurita tempering
111 // to get a maximally-equidistributed generator
112 z4 = z4 ^ ((z4 << 7) & 0x93dd1400);
113 z4 = z4 ^ ((z4 << 15) & 0xfa118000);
114
115 return z4 >>> (32 - bits);
116
117 }
118
119 }